
About Lab 3



Lab 3 has three parts:
• A probabilistic estimate of pi (monte.py)
• A program that inputs n, prints the first n 

primes, and counts the number of twin 
primes in that list. (primes.py)

• Two graphical programs where you draw 
bricks to form an ell or a pyramid.



Program monte.py

You get a number n from the user that specifies a 
number of "iterations".  For each iteration you get 
a random x and a random y,  each a float between 
-1 and 1. Let hits be the number of iterations 
where x*x+y*y<= 1.   Then 4*hits/n is an estimate 
of pi.  The prelab goes into why; the idea is that 
hits/n is an estimate of the ratio of the area of the 
circle x*x+y*y<= 1 to the area of the square         -
1<=x,y<=1 and this ratio is exactly pi/4.



Program primes.py
In this program you get a number n from the user 
and print the first n primes; we have done that 
much in class, though here you want to print them 
on one line.  A nice solution would be to print them 
in a table, with a preset number of columns (maybe 
10 or 15).  What is new about this program is that 
you also need to count the number of twin primes; 
prime numbers that differ by 2, such as 3 and 5, 5 
and 7, 11 and 13.  There is an unproven conjecture 
in Mathematics that there are  infinitely many twin 
prime pairs.



If we had an isPrime(x) function it would be easy to 
find twin primes: just ask 

if isPrime(x) and isPrime(x+2):
That isn't how we want you to do this.  You need to 
have a loop testing whether numbers are prime; 
we want you to modify that loop to remember if 
the previous odd number was prime; if it was and 
the current odd number is prime, you have found a 
pair of twin primes.



It helps to get the only even prime number, 2, out 
of the loop.  If the user only asks for one prime 
number, just print 2, say there are no twin primes, 
and quit.  For any larger number of primes you can 
print 2, start your prime count at 1, and only 
consider odd numbers. Keep a variable that says 
whether the previous odd number was prime. If 
you test an odd number and find it is prime and this 
previousWasPrime variable is True, you know you 
have found another twin prime pair.  The program 
asks you to count twin primes, not print them out.



The Graphical Programs

There are two similar graphical programs to write.  
The first one draws an L-shaped figure out of 
100x100 squares:



Remember that do draw a 
square we need its upper 
left corner. For the vertical 
column these are (0,0), 
(1,100), (0,200) and so forth

I'll leave it to you to figure out the coordinates 
for the horizontal row.



The last program draws a pyramid.

You build the pyramid row by row, starting at the 
bottom.  Each row has one fewer brick than the 
row below it, so the height of the pyramid in bricks 
is the same as the number of bricks on the bottom 
row.



Your program should ask the user for two numbers:
The number of bricks on the bottom row (or

the height of the pyramid in bricks)
We'll call this n.

The width of the square canvas in pixels.
We'll call this width.

Then size=width//n is the size of one brick.

Your program should then open a canvas that is 
width x width. 



(rowx, rowy)

Consider the following picture.  (rowx, rowy) are 
the coordinates of the  upper left corner of the 
leftmost box in each row.

If we knew rowx and rowy and the number of boxes 
in a row we could easily draw the row:



This loop draws one row:

x = rowx
y = rowy
for box in range(numInRow):

canvas.drawSquareFill(x, y, size)
x = x+size

After drawing one row, we need to update rowx, 
rowy and numInRow for the row above it.  This is 
not hard; just look at the picture and remember 
that y coordinates decrease as you go up.



Note that the initial values of our variables for the 
bottom row are:

rowx = 0
rowy = width-size
numInRow = n


